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Material and Methods
EXPERIMENTAL SETUP, DATA PROCESSING & MODELING
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Introduction
• Longitudinal multiomics data is complex and challenging to 

model.
• There is a need to model feature-level variation and capture 

inherent biological variability
• Bayesian hierarchical modeling (BHM) pools information from 

similar longitudinal trajectories of metabolites and proteins to 
improve estimation

• Bayesian posterior sampling enables summary statistics for: 

 - Similarity of metabolites and proteins across the  
  time course.

 - Longitudinal difference among chemical-exposed   
  omics datasets. 

Conclusion
We demonstrate a clustering strategy that accounts for limited 
observations, uncertainty, and the hierarchical structures of time-varying 
omics features. 
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Result and Discussion
FUNCTIONAL CLUSTERING: e.g., NEMP-treated data

Figure 4. (a) Predicted 
metabolite intensities from the 
model, overlaid with observed 
data across the time course.
(b) Implied variations were 
shown in predicted, relative 
intensity (logFC) to control of 
above individual metabolites.  
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Figure 2. Data pre-processing: metabolomic and proteomic datasets were filtered, 
imputed, and normalized using probabilistic quotient normalization (PQN). The log 
fold-change (logFC) of each feature (i) relative to media control depends on a smooth, 
nonlinear function of time*treatment interaction. 514 significant proteins were selected 
for clustering and 133 significant metabolites were pooled from reverse phase and 
HILIC, both positive and negative mode. 
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Figure 3. (a) 113 time-varying metabolites were assigned to each cluster. (b) Posterior 
predictive distribution check showed that simulated data closely matched the observed  
data at each time point. (c) Three metabolites exhibiting similar trajectory were 
grouped into cluster 14. 
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b Figure 5. Predicted time-varying omic features are summarized:  (a) Dissimilarity matrices in 
integrated mean squared error (IMSE) across the time points between different treatments. (b) 
Hierarchical clustering by dissimilarity matrices. (c) Correlated features are assumed to exhibit 
similar temporal trajectories.

• Estimate implied 
variation. 

• Model is robust to 
extreme 
observations. 

• Identify differentiated 
metabolites. 
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Figure 1. (a) Metabolomics and proteomics were acquired from human motor neurons 
derived from Induced pluripotent stem cells exposed to either AChE- active pesticides 
(CBL and CPF), sarin surrogate (NIMP), and VX surrogate (NEMP). (b) Bayesian 
hierarchical modeling (BHM) framework for functional clustering. Each time-varying 
protein or metabolite is assumed to belong to a latent cluster while capturing 
uncertainty and hierarchical structures. Summary statistics from temporal simulations 
for each treatment could be used to compare treatment effects, correlations between 
proteins and metabolites, and train surrogate models. 


